Line-transitive Collineation Groups of Finite Projective Spaces
نویسنده
چکیده
A collineation group F of PG(d, q), d >= 3, which is transitive on lines is shown to be 2-transitive on points unless d = 4, q = 2 and ] F ] = 31'5. m m
منابع مشابه
On collination groups of finite planes
Points will always be denoted by small latin letters, lines by capitals (unlike Bonisoli’s notations). By (a, b), with a, b ∈ N, we denote the greatest common divisor of a and b. Suppose π is a projective plane of order n, and suppose (p, L) is a point-line pair. Then a collineation θ of π is a (p, L)-collineation if θ fixes any point on L and every line through p. If (p, L) is a flag, then θ i...
متن کاملAlmost simple groups with Socle $G_2(q)$ acting on finite linear spaces
After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.
متن کاملFinite line-transitive linear spaces: parameters and normal point-partitions
Until the 1990’s the only known finite linear spaces admitting line-transitive, pointimprimitive groups of automorphisms were Desarguesian projective planes and two linear spaces with 91 points and line size 6. In 1992 a new family of 467 such spaces was constructed, all having 729 points and line size 8. These were shown to be the only linear spaces attaining an upper bound of Delandtsheer and...
متن کاملCollineation Groups Which Are Primitive on an Oval of a Projective Plane of Odd Order
It is shown that a projective plane of odd order, with a collineation group acting primitively on the points of an invariant oval, must be desarguesian. Moreover, the group is actually doubly transitive, with only one exception. The main tool in the proof is that a collineation group leaving invariant an oval in a projective plane of odd order has 2-rank at most three.
متن کاملAntiflag-transitive collineation groups revisited
An antiflag in a projective space is a non-incident point-hyperplane pair. A subgroup G of ΓL(n,q) is antiflag-transitive if it acts transitively on the set of antiflag of PG(n−1,q). In 1979, Cameron and Kantor [2] published a paper determining all antiflagtransitive subgroups of ΓL(n,q). A large part of the motivation was the fact that a group which acts 2-transitively on points is necessarily...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1971